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Characteristics of Microstrip Transmission Lines
with High-Dielectric-Constant Substrates

Achintya K. Ganguly and Clifford M. Krowne, Senior Member, IEEE

Abstract —An e~lcient numerical code is developed from a
full-wave analysis in the Fourier transform domain to determine

the characteristics of a single-strip or multistrip coplanar trans-

mission line. Modes of both even and odd symmetries are
included. The impedance of the transmission line is calculated
using the power–current equivalent model. Coupling constants
between the even and the, odd modes are also calculated. Results
are provided for a shielded two-strip coupled microstrip trans-
mission line on high-dielectric-constant substrate such as lan-
thanum aluminate with applications to superconducting trans-

mission lines.

I. INTRODUCTION

H[

IGH-TRANSITION-TEMPERATURE (HTC) Su-

perconducting materials [1], [2] can be utilized to

fabricate shielded microstrip transmission lines with ex-

tremely low loss. Recent advances in the techniques to

deposit HTC materials such as YBa2Cu307 _X on lan-

thanum gallate (LaGa03) [3], [4] and aIuminate (LaA103)

[11 substrates can be effectively used to design single and

coupled microstrip transmission lines for operation as

IOW-1OSSdelay lines and filters [5] in the microwave region.

These substrates have high dielectric constants (~= 25)

and small loss tangents ( N 0.001). The available CAD

programs for designing delay lines and filters are inaccu-

rate [5] for substrates with dielectric constants greater

than 18. Full-wave analysis of the microstrip lines is

necessary for accurate modeling of planar transmission

Iines with high-dielectric-constant substrates.

The spectral decomposition technique in the Fourier

transform domain introduced by Itoh and Mitra [6], [7] is

a very efficient method for the numerical analysis of

planar transmission lines. As shown by Jansen [8], accu-

rate numerical results can be obtained from low-order-

det:rminant eigenvalue equations through a proper choice

of basis functions to represent the singular edge behavior

of the strip currents. We apply this technique to develop a

numerical code to run on CRAY to calculate the disper-

sion characteristics, the impedances, and the coupling
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constants of the odd and even modes of a shield lad

coupled microstrip transmission line. The general equa-

tions of the spectral decomposition method are shown in

Section II. The numerical results for a coupled two-strip

shielded transmission line on lanthanum aluminate su~b-

strate are discussed in Section 111 and the conclusions are

given in Section IV.

II. GENERAL FORMULATION

A cross-sectional view of the configuration under con-

sideration is shown in Fig. 1. It consists of N, coupled

coplanar strips of width 2W and uniform spacing s. The

strips are infinitely thin and perfectly conducting. The

height of the dielectric substrate (regioh 1) is dl and the

top layer of height dz (region 2) is air. The substrate is

assumed to be lossless and nonmagnetic with a relative

permittivity ~,. The ground planes of the shielded struc-

ture are at .x = + a and at y = 0, dl + dz. The unit

vectors of the coordinate system will be denoted by

(2X, /y, 2=). The Y axis is perpendicular to the air-dielec-
tric interface, and the z axis is along the direction of wave

propagation. We assume that all components of the field

and the ctirrertt density have the stime propagation factor
e[(@t–Pz), where o is the frequency and /3 is the propaga-

tion constant of the wave. The vacuum permittivity and

permeability will be denoted by Co and Po, respectively.

The calculation of the field relations for planar transnnis-

sion line structures is a well-established procedure i~nd

the details will not be shown. An impedance dyadic

Green’s function can be derived [7] to express the surtace
current density J( x, dl) in terms of the tangential elettric

~ield ll(x, dl ) satisfying all boundary and interface cchdi-
tions. The expression in the Fourier transform domain is

given by

(

zzz(~n) z,., (~,,)

-Z.=(~n) z..(~n)

(1)

where the upper (lower) sign refers to even (odd) modes
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Fig. 1. Cross-sectional view of a coupled microstrip transmission line.

and ~(k., dl) is a Fourier transform defined by

where k. = (2n – lh-/2 a for even modes and k. = (n –

lhr / a for odd modes (n being a nonzero positive inte-

ger) and ~~n,o is the Kronecker delta. The cosine or the

sine Fourier transform in (2) will be used depending on

whether ~(x, -y) is an even or an odd function of x. The

elements 21, are given by

Z..x(kn) = (k:-% –P2-%)/(k: + P) (3)

Zzz(k,,) = (/3’.Ze – k;.Z/,)/(k; + ~2) (4)

where Z, and 2,, are the impedances, defined by

ze=zoze =zo/’(Iy +7;)

and

2), = Zozh = 2./($?: + Y;). (6)

In (6), 20 = ~= is the vacuum impedance and ~~

and ~P’ (p = 1,2) are, respectively, the normalized charac-

teristic admittances of the LSE and LSM modes in re-

gions 1 and 2, given by

where k. = &w and

rl = {k: + ~2 – e,k;}l’2

r,= {k; + /32 – k;}l’2. (9)

rl, z may be real or imaginaV. For imagina~ r, we should

replace r by ir, sinh r by i sin 17, and cosh r by cos r in

(7)-(9) and in all subsequent equations.
It is to be noted that the current density Y(.x, dl) and

the tangential electric field E(.x, dl) are nonzero in the

complementary regions of the domain — a < x < a. Hence,

a determinantal form of a dispersion equation can be

obtained by eliminating Ex and E, from (1) with a

Galerkin-like approach [7] in the Fourier transform do-

main by expanding the strip currents in terms of suitable

basis functions given in Appendix I. On substituting (A18)

in (l), we take the inner product with the basis functions

&(k,,) and iP(k.) for all p and obtain the following

matrix equation [7]:

in=l ~=1

p=l,2, ””., M=m ZN,

~=1 ~=1

p=l,2,...,N=mXN, (10)

where the elements K~: are given by

K:zm = 5 Z:z(kn)ip(kn)i, n(rkn)
n=l

K;: . i z,.(kn):p(h)in(kn)
~=1

K:; = i zx,(k)fp(kn)im(kn)
?1=1

K.:T = ~ z.tx(k,,)~(k,,) in(~,,). (11)
fi=l

Equations (10) and (11) involve only real quantities for

propagation in a Iossless medium. The set of equations

(10) are solved for the propagation constant P by setting
its determinant of order (M+ N) x (M + N) equal to

zero. On substitution of ~ in (10), all coefficients A,n and

Bm can be determined in terms of one coefficient (largest

in magnitude) from the solution of (II4 + N – 1) simulta-

neous equations obtained from (10) by eliminating one

row from the matrix. The remaining unknown coefficient

may be calculated from the power in the transmission

line. The field and the current density components can be

calculated by substituting the coefficients AP and Bp in

the expressions shown in Appendixes I and II.

The characteristics of the transmission line can be

obtained from the propagation constant, the longitudinal

current in the strip, and the power flow in the circuit. We

are mainly interested in the propagation of the funda-
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mental mode, which is TEM-like in character. For these line, i.e., D = dl + dz = h. The dimensionless quantities

modes, the power–current equivalent model seems to be ~~ are given by

the most suitable one [9]–[12] for modeling interconnec-

tions between microstrip lines and such TEM structures

as hds and drivers. The total average power in each ~n=[~~%~+%+j)
eigenmode of the transmission line propagating in the z

direction can be calculated by integrating the axial com-

(

●rk; dl k; dz

ponemt of Poynting’s vector over the cross section of the
+ a:xz: —

transmission line:

[J J

r; ~$: + 25*;

– (F;+ F;/er)

P..v=~Re a 1“+d2EXH*@zdxdy . (12)
–2a;x.Zhze

kOD—aO 1

We assume that the total power has the following

distribution over the N, strips, as proposed by Jansen [8]:
[(

F2n= a:xz: ;*[ + ;*;
)

[Jf<.,8V=~Re a ‘1’d2E X H~.2Z&dy
1

(13)
—a O

where P1,aVis the power contributed by the jth strip, HJ is

the magnetic field excited by the current in the jth strip,

and E is the total electric field from all the strips. The

impedance associated with the jth strip is defined by

P 2<.,av
zj=~=

I& Re[~~*]

where I] is the longitudinal component of the current in

the jth strip, given by —

[/ 1
‘J

XJ+W
Ij = lz,j(x, dl) ok e’cot-~z). (15)

x,—w +2a2 zh~ek”(~; +~1%)nx
~koD

Substituting (Al), (A3)-(A6), and (A12) in (15), we get

(116)

In the case of odd modes, I] = O for j = O and the defini-

[(

k; d2 ,
tion of impedance in (14) does not apply to the odd F4* = anxanz z:

*;*: +Epbz

modes on the center strip at x = O. From (12)–(14), it is 1 )

eviclent that the total power in the circuit is

,=1
(17)

The explicit expression for P,,,v can be derived by substi-

tuting (A18)-(A20), and (A23)-(A26) in (13): –2ffz ~~~gk”(p~ + ‘~/~,)nz fikOD
(19)

Zo~2aDfl m
<.,,, =

4ko
~ (1+ 8,E,0)

~=1

(“ F1n.7xn.ixJ(n)+ r’2n.Fzn.7z,(n)

( ) (w+ ~~n.ixniz,(l’t)+ ~~n~z.~.j ‘)

where a., = P/{k; + P2}1’2, ~nx = k. /{k~ + ~2}1/2, and

coth(rldl) 1
+?= rd &

11 sinh2 ( rldl)

where D is an arbitrary normalizing length, which may be
coth(r2dz) 1

@;= rd + (,20)
chosen as the total height of the shielded transmission 22 sinhz (r2d2) “
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Fig. 2. Effective dielectric constant versus frequency for s = 127.0 and

254.0 pm. The solid and the dashed curves represent the even and odd

modes, respectively. Other parameters are ●, = 24.5, 2VV= 152.4 mm,
2a= 0.254 cm, dz = 0.254 cm, and dl = 0.0254 cm.

Fig. 3. Plot of impedance as function of frequency for the same
parameters as in Fig. 1.

The normalized Fourier transforms of the strip current

components in (18) are defined in (A18) and (A19).

III. RESULTS

In this paper, we show the results of the numerical

computation of the propagation characteristics of the

lowest even and odd modes of a two-strip coupled,
shielded microstrip transmission line. The propagation

characteristics depend on a large number of parameters

such as f, dl, dz, a, w, s, and c. Here, we show the

variation of the characteristics with certain of these pa-

rameters, e.g. frequency (f), width (2w), and separation

(s) of the two strips. The other parameters are kept fixed

and we choose dl = 0.0254 cm, dz = 0.254 cm, 2a = 0.254

cm, and 6. = 24.5. The dielectric constant refers to the

lanthanum aluminate substrate. The numerical calcula-

tions are performed by truncating the infinite sum in the

spectral decomposition (eq. (11)) to a finite number n~a,,

and the number of the basis functions for the x and z

18
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Fig. 4. Effective dielectric constant versus separation of the strips ($)

at ~ = 10 GHz for 2W = 25.4 ~m, 76.2 ~m, and 152.4 pm. Also,

e, = 24.5, 2a = 0.254 cm, dz = 0.254 cm, and dl = 0.0254 cm.
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Fig. 5. Impedance versus strip separation for the same parameters as
in Fig. 4. The solid curves are for even modes and the dashed qrrves are
for odd modes.

components of the strip currents are truncated to mX and
m=, respectively. Calculations show that the choice n~=

= 300, m= =3, and mX = 3 provides an accuracy of 1 part

in 104. It should be noted that &lI(x) # O but qll(x) = O

(eqs. (A3) and (A4)) for the even modes and considering

T’ll(x) as a basis function may seem unnecessary. HOW.

ever, numerical instability for the coupled striplines oc-

curs if gl~(.x) and q l~(x) are not correctly paired.

The effective dielectric constants (.s.ff) of the even and

odd symmetry modes are shown in Fig. 2 as functions of

frequency for two values of s (strip separation) with

2W = 152.4 pm. As expected, E,ff increases with fre-

quency and is more sensitive to s at higher frequency. As
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Fig. 6. Variation of the coupling constant between the even and odd

modes with frequency for four values of strip separation s = 12.7 I.Lm,
25.4 pm, 127.0 pm, and 254.0 Vm and e,= 24.5, 2a= 0.254 cm, dz =

0.254 cm, and dl = 0.0254 cm.

the separation of the strips increases, the effective dielec-

tric constants for the even modes decrease while those for

the odd modes increase. The variation of the impedance

(Z) with frequency is plotted in Fig. 3 for the same
parameters as in Fig. 2. In general, the impedance in-

creases with frequency. Two opposing factors contribute

to the dependence of the impedance on frequency. The

effective dielectric constant increases but the effective

width of the strips decreases with frequency. At high

frequencies, the second factor dominates, resulting in an

increase in impedance. At low frequencies, the two ef-

fects are nearly equal and the impedance is practically

independent of frequency. For the odd modes, a small

decrease in impedance occurs at low frequency. Since the

electric field lines for the odd modes run also between the

strips, the effective width of the strips does not decrease

with frequency as rapidly as in the case of the even

mocles.
The dependence of Ceff and Z on the strip separation

is shown in detail in Figs. 4 and 5, respectively at ~ = 10

GHz for three different strip widths. For both even and

odd modes, C.ff shows oscillatory behavior at very small

values of s and then changes very slowly as s increases.

The region of the oscillatory behavior decreases as the

width of the strip decreases. The impedance of the even

modes, also, shows oscillations at small s opposite to that

for ●.ff and then slowly decreases with an increase in s.

The impedance for the odd modes always increases with

the strip separation. For both types of modes, the effec-

tive dielectric constant increases and the impedance de-

creases with an increase in the strip width.

The coupling constant between the- even and the odd

modes of the coupled transmission line is shown in Figs. 6

ancl 7. These parameters are important for designing

filters. The coupling constant is defined by K = (/3evZev–

&dzodJ/@e,z:, + P.dz.d), where the subscripts “ev”
and “od” denote even and odd modes, respectively. Fig. 6

shclws the variation of the coupling constant with fre-

quency for different separations between the strips. The

.2 [ I

-4

-12

2W. 152.4 ym

s = 24.5

I .,.
-14 I I

o 50 100 150 200 250 300

S ( ~m)

Fig. 7 Coupling constant versus strip separation at ~ = 10, 30, 50, 70,

and 85 GHz. Other parameters are the same as in Fig. 6.

coupling loss as a function of frequency passes througll~ a

minimum at each s, The minimum loss increases but the

corresponding frequency decreases with an increase in s.

For s = 12.7 Urn, the minimum coupling loss of – 3.9 f~B

occurs at ~ = 70 GHz whereas the minimum coupling 10SS

is – 10.5 dB at ~ = 60 GHz when s = 254.0 Km. ln Fig. 7,

the coupling constant is plotted as a function of s for

different frequencies. At each frequency the coupling loss

increases with an increase in the strip separation but for a

fixed strip separation the coupling loss first decreases and

then increases as the frequency is increased.

IV. CONCLUSIONS

We have developed an efficient numerical code for

calculating the propagation characteristics of single and

coupled microstrip transmission lines from a full-wave

analysis in the Fourier transform domain. The numerical

code is applicable to transmission lines with high-dielec-

tric-constant substrate. The code will be very useful in

designing extremely low loss delay lines and filters fabri-

cated with high-temperature superconducting strips on

lanthanum aluminate or gallate substrate. In high-dielect-

ric-constant substrates, the effective dielectric constant

and the impedance of the coupled transmission lines show

oscillatory behavior with changes in strip separation when

the separation is very small. Such small separations should

be avoided in the design of delay lines and filters.

APPENDIX I

A suitable set of basis functions satisfying the edge
conditions term by term is required to represent the strip

current components for efficient numerical computation.

For this purpose we choose the set of basis functions

proposed by Jansen [8] to express the current distribution

for a planar transmission line with N, symmetrically plalced

strips [131, [14]. For the even modes, we may write (sup-
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pressing the propagation factor

.lZ(x, dl) = ~Jz,J(x, dl) = +
j &j
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/(@f-/3z))
tions in (A3)–(A6) are given, respectively, by

~ f {a,mfl~(~ - ~,) ‘lm(k~) = (1+ ~,’’”OJ2a
=—nem=l “,
j+ O-

~ [Jo(knw -(n’z -1)77)+ Jo(/cJv +(?n -l) T)]

[
– ~,mf2?J~ – ~,)} + &o&(x) 1 “’”(k”)=(1+;kwo)2a. .

[Jo(knw- (m-l )7r)-Jo(knw+(nz- l)7r)]
iJ, (x, dl) = ~i.lx,, (.x, dl) = : 5 5 {c,m%m(x-xJ)

j, 1=–n,?n=l
J+o

,<’m(k”) = (1+ ~“’o)2a

[

~.
+ djmq2m(x – x,)}+ z com~lm(~)

~=1 1
(Al)

where n, = (N, – 1)/2 or N, /2 for odd or even number of

strips, respectively and ml and m= are the number of

basis functions for ~X and 1=. The distance of the center

of the jth strip from the origin is denoted by x~. For

symmetrically placed strips, we have

(j(,s+2w),

I
j=O, +1, &2,. ””, -in, (N, odd)

(M)
‘j= *[(/jl–*)(~+’2~)]~

j=il, *2, ”””, *n, (N$ even).

The terms in square brackets in (Al) are to be included

only if N. is odd where j = O is the center strip located at

the origin. The quantities ~ln and ~2n are single-strip

even and odd basis functions for J= while ql~ and q2~

are the odd and even basis functions for JX, which are

given by

[

cos((m-l)7Tx/w)

fhix) = {1-(x/w) ’} ’/2 ‘ ‘x’<w (A3)

o, W<lxl<a

[

sin((m–l)7rx/w)

~lm(x) = {l-(x/w)’}’” ‘ ‘x’<w

o, w<lxl<a

[

sin((m–~)~x/w)

f2m(x) = {1-(x/w) 2}1’2 ‘ ‘x’<w

o, W<lxl<a

A4)

A5)

[

cos((m–~)mx/w)

T’m(x) = {1-(x/w) 2}1’2 ‘ ‘x’<w (A6)

o, w<lxl <a.

In (A4), qll(x) = O, but we keep this function for the

proper pairing of <1~ and q ~~ to avoid numerical insta-

bility. From (2), the Fourier transforms of the basis func-

From the symmetry properties of the even modes

J=( – x)= J=(x) and JX(– x) = – JX(X), it follows that

a_l~ = aj~, b_l~ = – bj~, c_l,W = cl~, and d_l~ = – dl~

and we can express the current density components as a

sum over the strips with x, >0:

+ djm(~2m(x - xl) - T12,;n(x+ X,)))

r m. 1

where the terms inside the square brackets are included if

N, is odd. From (2), the Fourier transforms of J:(x, d)
and JX(X, d) are, respectively, given by

.COS(knX, )+ b,m&jJkJSin(+,))
(A1O)

r m, 1 n, m.

As before, the terms in square bracket in (A1O) and (All)
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are to be included when N, is odd and refer to the strip

with its center at the origin (j= O).

Since the symmetry for the odd modes is given by

.lZ(– x)= – J,(x) and lX(– x)= JX(X), we may use the

following expansions to represent 1= and .7X for these

modes:

I n. m.

– I=(X, (iI) = ; ,: ~ {L7,,n(g,m(x-xj) +.f,m(x+x,))
J–lm=l

+b,m(f,m(x –X,)–fln(x+ +)))

(A12)

‘djm(~l,.(x -xj)-~lm(x +x,))}

[

m,

+ x CO.L7727J x) 1 (A13)
m=l

with the following Fourier transforms:

[

m,

1- (kn) + : f (a,#g2Jkn)– Jz(kn, dl) = z ~ornf2m

I-n=l j=l,~=l

.Cos(knx, ) + b,m??lm(~,,)w+,))

(A14)

[ 1

i.tx(kn, dl) = 3 co~7j2n(kn) + ~ “f {c,~fi2,,1(~n)
~=1 J= 1171=1

.COS(knX,)+ d,mfilwl(~n)sin(~nxj)}o
(A15)

To develop a concise notation, we introduce two sets of

gerleralized basis functions, ~P(km) and iP(kJ, of dimen-

sions M = mzn~ and N = mxn,, respectively. For the

even modes, the set ~P is formed by arranging the ele-

ments “ “ . , 1’1~ cos(k,,x~), ” “ “,&n sin(k~xj), ~“ “ from

(AIO) in ascending orde~s first in the index m and then in
the index j; the set (P is similarly formed from the

elements “ “ “ ,fi2mCOS(~nXJ)J”” “jfilmsin(~nx,)> .”” in
(A 11). Thus, we may write for the even modes

ip(kn)= [”””,{A ~,z)Cos (~nx,)>

Ljq(kn)= [.. ,iu(wcos(kx,),

“”” ,i2A~,L)sin(~nx,),” -. ] (A16)

where P=1,2, ”-”, M, m=l,2, ”.”, mz, q=l,2,. ”., N,

1=1,2,””” ,mI, and j=[O],l,2, ” “ “,n,. Thetermwith j= O

ocmrs for N, odd only. From (A14) and (A15), the

generalized basis functions for the odd modes may simi-

larly be written as

ip(h)= [””” ,i2Fn(k.) cOs(k.xj)>

o”” ,=fh(~n)sin(~,lxj))” -” 1

jq(kn)=[. >7121(k)cos(hx,)>

“”” ,fhA~n)sin(~n~J)j”. ~] (A:17)

where the indices p, q, m, 1, and j have the same range

as in (A14). In conformity with the above notation, we

combine the expansion coefficients ajn, ” “ “, bj~ into a set

AP (dimension M) and the coefficients cjl>” “ “, djl into

another set Bq (dimension N). Thus, (A1O), (Al 1) and

(A14), (A15) for the strip currents in the Fourier trans-
form domain assume the forms

i.f’(k., dl) =’ f Z?pfp(k.) = AA f ~p~(~,l) = fL.
p=l p=l

(A18)

where A–P= Ap /AA, BP = Bp /AA, and AA is the largest (in

magnitude) element of the set of coefficients Ap, IIp, In

(A18), ~z. and ~X,, are the normalized Fourier transforms
of the strip current components from all the strips. For

later use, we also define the normalized Fourier trans-

forms of the strip current components associated with a

particular ( jth) strip. For the even modes, we have

+ Zi,mi2m(~n)Sin(f%q))

(1+ a,,o) ‘
.tX,j(n) = z z (%JL(L) Cos(f+,)

~=1

+ ~,m’izm(k,,)‘in(k.xJ)) (A19)

and for odd modes

(1+ 8,,.) ‘z
.7Z,,(n) = z X (zjm~2m(kn) Cos(knx,)

~=1

+ ljniln(~n)sin(~nx,)) ,

(1+ S,,o) “*
~x,,(n) = z z (%J72m(w Cos (+,)

in=l

+ fl,,n?j,,n(w w%)) (A20)
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= dj~ /AA. It should be noted that there is a one to one (0. After lengthy but straightforward algebra, we obtain
correspondence between the elements alm, b~n and AP as

well as between cl~, dlwt and Bq. Ex = ~ Q:n

{)

sin(k. x)
sinh ( rP yP)

~=1 Cos(knx)

APPENDIX II

For the sake of completeness, we give the expressions

for the electric (E) afid magnetic (H) field cornporlents ‘x=:lR’n(:J~::~x) )sinh(rpy’

used in the calculation of the power flow in the circuit.

The hybrid field components in the microstrip transmis-

sion line can be expressed as a superposition of the ‘=zlQ’n(~::~:’)lcOsh(rpy,)

complete set of LSE (TE to y) and LSM (TM to y)
Hy = ~ R:n

(1

sin(kfix)
modes of a dielectrically loaded waveguide. The field sinh ( rP yP)

Cos(kn.x)
structures of the LSE and the LSM modes can be derived

~=1

from the two scalar potentials [15] ~~(x, y, z, t) and

4’(x, Y, Z, t), respectively Since we are considering only
propagating waves with angular frequency o and propa- ‘z=:l’Q’n(~J~::f) }sinh(ryp’

gation constant /3, we may assume the following forms for m

the scalar potentials: Hz = – ~ iR~n

(}

sin(kn X) Cosh(rpyp) (A23)

~=1 Cos(knx)

[

.

()sin(kzx)
i~A~ sinh(rly), O<y<di

+h = ~f(cu-~z) n ‘1
Cos(knx)

m

()

sin(k. x)
i~B~ sinh(r2(h– y)), dl<y<dl+d2=h
~=~ cos(k~x)

and

where the upper and the lower terms inside the curly

brackets refer to even and odd modes respectively. Under

reflection in the yz plane, the symmetries of the even

modes are @k-odd, ~ ‘-even while the odd-mode sytnme-

tries are @A-even, @‘-odd. All field components can be

expressed in terms of Yh are ye [15]. The x and y

dependence are chosen so that the tangential compo-

nents of E and the normal components of 11 vanish on

the metal enclosure at x = + U, y = O,h. For even modes
k,. = (2n – l)m/2a, and for odd modes kn = (n – l)r/a.

171and il, are given in (9).

The four coefficients A:, B;, A;, and B; can be

related to the components of the strip currents by apply-

ing the interface conditions on the field components at

y = d, namely, E=(x, d – ) = E,(x, d + ), EX(X, d – ) =

EX(X, d + ), HZ(X, d – ) – HX(X, d + ) = JZ(x, d) and

H,(x, d –)– H:(x, d +) = – .TX(x, d). The symbols d –

and d + denote, respectively, infinitesimally small dis-

tances below and above the plane y = d,. Two additional

conditions at Y = dl on Ez and EX which are zero within

O < 1x1< w and nonzero in the region w < 1x1< a yield

cosh(rz(h– y)), dl<y<dl+dl,

(A21)

(A22)

where p = 1,2 refer to regions 1 and 2, respectively, and

Y1= Y, Y2 = h – Y. The coefficients Q& for the electric

field components are given by

Q:n = -z,~(z...,~.. * ~.,~,.)/sinh (rPdp)

Q;n = (-1) ’zO~Ze(kn.7xn f P~,.)/(qsinh(rPdp))

( )4?:. = – Z04 z.x~l. t zzz~,. /sinh (rpd,) (A24)

where ~IJ = Z,, /20 are the normalized forms of the

impedances defined in (3)–(6). Similarly, for the magnetic

field components,

R;,, = ( -l)pI/i@7yn i ~:z~,n)/(ko sinh(r,d,))

R;n = dzh(- b~xn + k.l..)/(k, sinh(rpd,))

R~n = ( ‘l)prp~(~j.jv. * 2fz~zn]/’(k0 sinh(rPdP))

(A25)
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with

Hk2
2:= = .Z:X = o!nxa!nz Jzze – Zh

r:
(A26)

– k. /{k~ + @2}l/2, andwhere k~l = erk~, k~2 = k;, an. —

a .,= P\{kt + 132}1/2. k before, the upper (lower) sign
in (A24) and (A25) refers to even (odd) modes. To obtain

the contribution to E or H from the current in the jth

strip only, we have to replace ~X~ and ~z~ in (A24) and

(A25)I by ~X,j(n) and ~z,j(n)> respectively, from (A19) and
(A20)I.
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