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Characteristics of Microstrip Transmission Lines
with High-Dielectric-Constant Substrates

Achintya K. Ganguly and Clifford M. Krowne, Senior Member, IEEE

Abstract —An efficient numerical code is developed from a
full-wave analysis in the Fourier transform domain to determine
the characteristics of a single-strip or multistrip coplanar trans-
mission line. Modes of both even and odd symmetries are
included. The impedance of the transmission line is calculated
using the power—current equivalent model. Coupling constants
between the even and the odd modes aré also calculated. Results
are provided for a shielded two-strip coupled microstrip trans-
mission line on high-dielectric-constant substrate such as lan-
thanum aluminate with applications to superconducting trans-
mission lines.

1. INTRODUCTION

IGH-TRANSITION-TEMPERATURE (HTC) su-
H[perconducting materials [1], [2] can be utilized to
fabricate shielded microstrip transmission lines with ex-
tremely low loss. Recent advances in the techniques to
deposit HTC materials such as YBa,Cu;0,_, on lan-
thanum gallate (LaGaO,) [3], [4] and aluminate (LaAlO;)
[1] substrates can be effectively used to design single and
coupled microstrip transmission lines for operation as
low-loss delay lines and filters [5] in the microwave region.
These substrates have high dielectric constants (e = 25)
and small loss tangents ( ~0.001). The available CAD
programs for designing delay lines and filters are inaccu-
rate [5] for substrates with dielectric constants greater
than 18. Full-wave analysis of the microstrip lines is
necessary for accurate modeling of planar transmission
lines with high-dielectric-constant substrates.

The spectral decomposition technique in the Fourier
transform domain introduced by Itoh and Mitra [6], [7] is
a very efficient method for the numerical analysis of
planar transmission lines. As shown by Jansen [8], accu-
rate numerical results can be obtained from low-order-
determinant eigenvalue equations through a proper choice
of basis functions to represent the singular edge behavior
of the strip currents. We apply this technique to develop a
numerical code to run on CRAY to calculate the disper-
sion characteristics, the impedances, and the coupling
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-constants of the odd and even modes of a shielded

coupled microstrip transmission line. The general equa-
tions of the spectral decomposition method are shown in
Section II. The numerical results for a coupled two-strip
shielded transmission line on lanthanum aluminate sub-
strate are discussed in Section III and the conclusions are
given in Section IV.

II. GenNeErAL FORMULATION

A cross-sectional view of the configuration under con-
sideration is shown in Fig. 1. It consists of N, coupled
coplanar strips of width 2w and uniform spacing s. The
strips are infinitely thin and perfectly conducting. The
height of the dielectric substrate (region 1) is d, and the
top layer of height d, (region 2) is air. The substrate is
assumed to be lossless and nonmagnetic with a relative
peimittivity €,. The ground planes of the shielded struc-
ture are at x=+a and at y=0, d,+d,. The unit
vectors of the coordinate system will be denoted by
(é,,¢,,é.). The y axis is perpendicular to the air—dielec-
tric interface, and the z axis is along the direction of wave
propagation. We assume that all components of the ficld
and the current density have the same propagation factor
e»'~B2) where w is the frequency and g is the propaga-
tion constant of the wave. The vacuum permittivity and
permeability will be denoted by €, and u,, respectively.
The calculation of the field relations for planar transmis-
sion line structures is a well-established procedure and
the details will not be shown. An impedance dyadic
Green’s function can be derived [7] to express the surface
current density J(x,d,) in terms of the tangential €lectric
field E(x,d,) satisfying all boundary and interface condi-
tions. The expression in the Fourier transform dorain is
given by

Zzz(kn) Z:x(kn) * ;(kn’dl) —T-_iéz(kiz’dl)
Zx‘:(k”) Z’”‘(k") lj;(krwdl) Ex(kn’dl)
(1)

where the upper (lower) sign refers to even (odd) modes
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Fig. 1. Cross-sectional view of a coupled microstrip transmission line.

and f(k,,d,) is a Fourier transform defined by

i 1 a cos (k,x)
f(kn’y) = m./‘af(x’y)<sin(knx)

where k, =(Q2n — 1w /2a for even modes and k, =(n—
1ar /a for odd modes (n being a nonzero positive inte-
ger) and §; , is the Kronecker delta. The cosine or the
sine Fourier transform in (2) will be used depending on
whether f(x,y) is an even or an odd function of x. The
elements Z,, are given by

Z, (k)= (kiZ,~B*2,)/(k;+B7) (3)
Zzz(kn) = (ABZZe - kizth)/(k;% + Bz) (4)
sz(kn) = sz(kn) =Bkn(ze + Zh)/(kr’_; + Bz) (5)

where Z, and Z, are the impedances, defined by

dx (2)

Z,=ZyZ,=Zy/(Y(+Y5)
and

=ZoZ,= ZO/(Y” + Yh) (6)
In (6), Zy=1/py /€, is the vacuum impedance and Y/
and Ye (p =1,2) are, respectively, the normalized charac-
tenstlc admittances of the LSE and LSM modes in re-
gions 1 and 2, given by

—, I
and YJ =-=coth(I,d,)

_o
Yl”z—/;gcoth(l“ldl) k. (7)

v -

ko ok,
coth(I'id,) and Y; =r—coth(F2d2) (8)
2

1
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where kj=+/u,€ow and
T ={kZ+p>~ e, k)"
1/2
L={kl+p>—k3} " )

I'; , may be real or imaginary. For imaginary I', we should
replace I' by iI, sinhT" by isinT, and coshI by cosT in
(7—(9) and in all subsequent equations.

It is to be noted that the current density J(x,d,) and
the tangential electric field E(x,d;) are nonzero in the
complementary regions of the domain — ¢ < x < a. Hence,
a determinantal form of a dispersion equation can be
obtained by eliminating £, and E, from (1) with a
Galerkin-like approach [7] in the Fourier transform do-
main by expanding the strip currents in terms of suitable
basis functions given in Appendix I. On substituting (A18)
in (1), we take the inner product with the basis functions
X,(k,) and {;(kn) for all p and obtain the following
matrix equation [7):

M
Y. KP4, + Z KI"B, =0,

m=1

p=12,M=m,N,
M
Z KP4, + Z KmB, =0,
p:1727"'7N=meS (]‘O)

where the elements K27 are given by

I<zpzm= Z Z:z(kn)/\’;p(kn)/\;m(kn)

n=1

K= Y Z (k) R,k ) (k)
n=1

K= X Zo (ko) (k)in()

n=1

Krr= Y Z, (k) (k) (k).

n=1

(11)

Equations (10) and (11) involve only real quantities for
propagation in a lossless medium. The set of equations
(10) are solved for the propagation constant 8 by setting
its determinant of order (M + N)X(M + N) equal to
zero. On substitution of B in (10), all cocfficients A, and
B,, can be determined in terms of one coefficient (largest
in magnitude) from the solution of (M + N —1) simulta-
neous equations obtained from (10) by eliminating one
row from the matrix. The remaining unknown coefficient
may be calculated from the power in the transmission
line. The field and the current density components can be
calculated by substituting the coefficients A, and B,
the expressions shown in Appendixes I and II

The characteristics of the transmission line can be
obtained from the propagation constant, the longitudinal
current in the strip, and the power flow in the circuit. We
are mainly interested in the propagation of the funda-
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mental mode, which is TEM-like in character. For these
modes, the power—current equivalent model seems to be
the most suitable one [9]-[12] for modeling interconnec-
tions between microstrip lines and such TEM structures
as loads and drivers. The total average power in each
eigenmode of the transmission line propagating in the z
direction can be calculated by integrating the axial com-
ponent of Poynting’s vector over the cross section of the
transmission line:

1 @ rd+d, |
= *.5
P, ZRe[f_afO ExH ezdxdy]. (12)
We assume that the total power has the following
distribution over the N, strips, as proposed by Jansen [8]:
1 « dy +d, . A
P‘av=§Re[f_af0 EXHj-ededy} (13)

Js

where P, ,, is the power contributed by the jth strip, H, is
the magnetic field excited by the current in the jth strip,
and E is the total electric field from all the strips. The

impedance associated with the jth strip is defined by

7 Pj,av 2Pj,aV 14
=T T Re[L17] (19

where I, is the longitudinal component of the current in
the jth strip, given by

XJ+W (=
L=1[" 1 (x.d;)dx|e 2, (15)

X, —w

Substituting (A1), (A3)-(A6), and (A12) in (15), we get

o)TWA T
Q‘i‘a}-“)-‘— Z a; wJdo((m—1)7)

2

mwd ™

LS

Ij(Z,l‘) — ei(wt—Bz)

In the case of odd modes, I, =0 for j =0 and the defini-
tion of impedance in (14) does not apply to the odd
modes on the center strip at x = 0. From (12)-(14), it is
evident that the total power in the circuit is

P, = 2212

J.av:
J=1

(17)

Thc explicit expression for P ,, can be derived by substi-
tuting (A18)—(A20), and (A23) (A26) in (13):

2, A%aDp
P = 4 X (1+5k 0)
n=1

.(Plnjxn]xj(n) + P2ngnJZJ(n)

Tim)  (8)

where D is an arbitrary normalizing length, which may be
chosen as the total height of the shielded transmission

+ FSnjxanJ(n’) + F4njzn
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line, ie., D=d,+d,=h. The dimensionless quantitics
P, are given by

2 —

)

e k2 d, k2 d,
1-!2 B 1 lpZ

Py, =

a (¢1

+ a2 Z?

nx e

(Ye+Y1/e)

-2 ZZ
a h“e koD

d
+52¢;)

_ = k(Y5 +Ye/€,)
+2a%: 72,7, ——— "
Ay yliplie BkOD

_(d,
—Zf(ﬁlﬁf

(even mode)

(16)

mdo((m—1)7) (odd mode).

7?2 erkgﬂ,’[, +k_g_2d,
2 p™t 1D

d
—gw;)
_ k(Y5 +Y( /€, )
Bky,D

V4

P4n =0, Ay e

—(d;
—22(31¢f+

= B/{krzz + 32}1/2: Ay ™= kn /{ki + :32}1/27 and

where «,,,

coth(Tyd,) 1
= sinh?(Tyd,)

+

' 1-‘ldl

coth(T',d,) 1
= sinh?(T,d,)

+

g 1—‘2(12

(20)
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Fig. 2. Effective dielectric constant versus frequency for s = 127.0 and
254.0 um. The solid and the dashed curves represent the even and odd
modes, respectively. Other parameters are €, = 24.5, 2w =152.4 mm,
2a=0.254 cm, d, = 0.254 cm, and d; = 0.0254 cm.
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Fig. 3. Plot of impedance as function of frequency for the same
parameters as in Fig. 1.

The normalized Fourier transforms of the strip current
components in (18) are defined in (A18) and (A19).

III. REesuLTs

In this paper, we show the results of the numerical
computation of the propagation characteristics of the
lowest even and odd modes of a two-strip coupled,
shielded microstrip transmission line. The propagation
characteristics depend on a large number of parameters
such as f, dy, d,, a, w, s, and e. Here, we show the
variation of the characteristics with certain of these pa-
rameters, e.g. frequency (f), width (2w), and separation
(s) of the two strips. The other parameters are kept fixed
and we choose d, = 0.0254 cm, d, = 0.254 ¢m, 2a = 0.254
cm, and €, = 24.5. The dielectric constant refers to the
lanthanum aluminate substrate. The numerical calcula-
tions are performed by truncating the infinite sum in the
spectral decomposition (eq. (11)) to a finite number n,,
and the number of the basis functions for the x and z
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Fig. 4. Effective dielectric constant versus separation of the strips (s)
at f=10 GHz for 2w=254 um, 762 pm, and 1524 um. Also,
€,=24.5,2a=10.254 cm, d, = 0.254 cm, and d; = 0.0254 c¢m.
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Fig. 5. Impedance versus strip separation for the same parameters as

in Fig. 4. The solid curves are for even modes and the dashed curves are
for odd modes.

components of the strip currents are truncated to #, and
m,, respectively. Calculations show that the choice n,,
=300, m, =3, and m, = 3 provides an accuracy of 1 part
in 10%. It should be noted that £,,(x)# 0 but n,(x)=0
(egs. (A3) and (A4)) for the even modes and considering
1,1(x) as a basis function may seem unnecessary. How-
ever, numerical instability for the coupled striplines oc-
curs if £,,,(x) and 7,,(x) are not correctly paired.

The effective dielectric constants (e ) of the even and
odd symmetry modes are shown in Fig. 2 as functions of
frequency for two values of s (strip separation) with
2w=1524 pm. As expected, e, increases with fre-
quency and is more sensitive to s at higher frequency. As
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Fig. 6. Variation of the coupling constant between the even and odd
modes with frequency for four values of strip separation s =12.7 pm,
254 pm, 127.0 pm, and 254.0 pm and e, = 24.5, 2a=0.254 cm, d, =
0.254 cm, and d, = 0.0254 cm.

the separation of the strips increases, the effective dielec-
tric constants for the even modes decrease while those for
the odd modes increase. The variation of the impedance
(Z) with frequency is plotted in Fig. 3 for the same
parameters as in Fig. 2. In general, the impedance in-
creases with frequency. Two opposing factors contribute
to the dependence of the impedance on frequency. The

*effective dielectric constant increases but the effective
width of the strips decreases with frequency. At high
frequencies, the second factor dominates, resulting in an
increase in impedance. At low frequencies, the two ef-
fects are nearly equal and the impedance is practically
independent of frequency. For the odd modes, a small
decrease in impedance occurs at low frequency. Since the
electric field lines for the odd modes run also between the
strips, the effective width of the strips does not decrease
with frequency as rapidly as in the case of the even
modes.

The dependence of €4 and Z on the strip separation
is shown in detail in Figs. 4 and 5, respectively at f =10
GHz for three different strip widths. For both even and
odd modes, €. shows oscillatory behavior at very small
values of s and then changes very slowly as s increases.
The region of the oscillatory behavior decreases as the
width of the strip decreases. The impedance of the even
modes, also, shows oscillations at small s opposite to that
for e.; and then slowly decreases with an increase in s.
The impedance for the odd modes always increases with
the strip separation. For both types of modes, the effec-
tive dielectric constant increases and the impedance de-
creases with an increase in the strip width.

The coupling constant between the even and the odd

modes of the coupled transmission line is shown in Figs. 6

and 7. These parameters are important for designing
filters. The coupling constant is defined by K = (8., Z,, —
BioaZod)/BeyZey + BoaZoq)» Where the subscripts “ev”
and “od” denote even and odd modes, respectively. Fig. 6
shows the variation of the coupling constant with fre-
quency for different separations between the strips. The
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Fig. 7. Coupling constant versus strip separation at f =10, 30, 50, 70,

and 85 GHz. Other parameters are the same as in Fig. 6.

coupling loss as a function of frequency passes through a
minimum at each s. The minimum loss increases but the
corresponding frequency decreases with an increase in s.
For s =12.7 um, the minimum coupling loss of —3.9 dB
occurs at f = 70 GHz whereas the minimum coupling loss
is —10.5 dB at f =60 GHz when s = 254.0 urn. In Fig. 7,
the coupling constant is plotted as a function of s for
different frequencies. At each frequency the coupling loss
increases with an increase in the strip separation but for a .
fixed strip separation the coupling loss first decreases and
then increases as the frequency is increased.

1V. ConcLusioNs

We have developed an efficient numerical code for
calculating the propagation characteristics of single and
coupled microstrip transmission lines from a full-wave
analysis in the Fourier transform domain. The numerical
code is applicable to transmission lines with high-dielec- -
tric-constant substrate. The code will be very useful in
designing extremely low loss delay lines and filters fabri-
cated with high-temperature superconducting strips on
lanthanum aluminate or gallate substrate. In high-dielec-
tric-constant substrates, the effective dielectric constant
and the impedance of the coupled transmission lines show
oscillatory behavior with changes in strip separation when
the separation is very small. Such small separations should
be avoided in the design of delay lines and filters.

APPENDIX |

A suitable set of basis functions satisfying the edge
conditions term by term.is required to represent the strip
current components for efficient numerical computation.
For this purpose we choose the set of basis functions
proposed by Jansen [8] to express the current distribution
for a planar transmission line with N, symmetrically placed
strips [13], [14]. For the even modes, we may write (sup-
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pressing the propagation factor ¢“®?=F)

1 ny m.
Jz(xﬂdl)zzjz,j(x’dl)=-i Z Z {ajmflm(x_xj)
1 f=—n,m=1
! TG
b}m§2m(x_x])}+ E aOmglm(x)]
m=1
i‘]x(x7d1)=2i]x,j(x’dl)—‘ Z Z { jmnlm(‘x_x])
J ]~—n m=1
' J¥=0

+ d]ngm(x o xj)} + [ Z_f COmnlm(x)]
(Al)

where n, =(N,—1)/2 or N, /2 for odd or even number of
strips, respectively and m, and m, are the number of
basis functions for J, and J,. The distance of the center
of the jth strip from the origin is denoted by x,. For
symmetrically placed strips, we have

J(s +2w),
j=0,41,42,--,+n, (N, odd)
Xp= A2
j [(I]l——(s+2w)] (A2)
J=xL,+2, -, tn, (N, even).

The terms in square brackets in (A1) are to be included
only if N, is odd where j= 0 is the center strip located at
the origin. The quantities ¢,,, and &,,, are single-strip
even and odd basis functions for J, while 7,,, and 7,,,
are the odd and even basis functions for J,, which are
given by

cos((m—1)ymx/w)

P (XI\W
En(X) =1 (1=(x/w)})"" (A3)
0, w<l|xl<a
sin((m—1)mwx /w)
e lxl <w
Nim(X) = {1—(x/w)2} (A4)
0, w<lx|<a
sin((m —3)mx /w)
Y lxl <w
Eam(x) = {1—(x/w)2} (AS)
0, w<lxl<a
cos((m—g)n-xl//;v) <
Mon(X) = 1§ {1=(x/w)?} (AS6)
0, w<lxl<a.

In (A4), 7,,(x)=0, but we keep this function for the
proper pairing of ¢,,, and 7,,, to avoid numerical insta-
bility. From (2), the Fourier transforms of the basis func-
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tions in (A3)-(A6) are given, respectively, by
W
(148, o)2a

[To(kw ~(m—=1)m)+ Jo(kw + (m —1)7)]

é_:lm( kn) =

Mm(kn) = m

[o(kw —(m=1)m) = Jo(kw + (m ~m)]

.‘.’EZm(kn) = W
[To(kgw = (m=3)m) = To(kw +(m — )]
m™W

Mom( k) =W
-[Jo(knw ~(m—3)m)+ To(kw+(m— %)77)]
(A7)

From the symmetry properties of the even modes
J(=x)=J,x) and J(—=x)=—-J(x), it follows that
4 _yn=Qjp, b_py=—by,, c_,,=c,,, and d_,, =—d,,
and we can express the current density components as a

sum over the strips with x, > 0:

1 % M
Jz(x’dl)_z ; Z_: { jm(é:lm(x-xj)+§1m(x+x1))
bjm(§2m(x - x}) - §2m(x + xj))}
+[ - a mflm(x)} (A8)
1 s M
irit) =5 5 (en(mnts - 5) £ mnr 7))

+ djm(n2m(x - x]) - an(x + xj))}

AT commm(x)] (A9)
m=1

where the terms inside the square brackets are included if
N; is odd. From (2), the Fourier transforms of J_ (x,d)
and J,(x,d) are, respectively, given by

‘fz(krndl):I: 2 aﬂmélm(kn) + Z Z {ajmglm(kn)
m=1 J=1m=1
-cos(k,,xj)+bjm‘me(k,,)sin(knx])}
(A10)
.0k =| £ contin)|+ £ X {ouintin)
m=1 J=1m=1

ccos (k,x;)+d,,7,(k,)sin (knx])}.
(A11)

As before, the terms in square bracket in (A10) and (A11)
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are to be included when N, is odd and refer to the strip
with its center at the origin (j = 0).

Since the symmetry for the odd modes is given by
J(=x)=—J(x) and J(—x)=J/(x), we may use the
following expansions to represent J. and J, for these
modes:

1 7 ™M

—‘]z('x’dl)=§’~ Z Z {ajm(‘me(x—xj)+§2m(x+xj))
Jj=1lm=1

x])—flm(X"F x]))}

+ b]m(glm(x -

+ Z} a0m§2m(x)] (A12)

ij"(x’dl)— i Z {Jm(n2m(x-—xj)+772m(x+x1))

]—1 m=1

- djm(nlm(x - x}) - nlm(x + xj))}

(A13)‘

i COngm( X)}

m=1

with the following Fourier transforms:

> {@mbamlky)

J=1lm=1

2 aOngtn( kn)

m=1

—f;<kn,dl>=[

~cos (k,x,)+ b, &1 .(k,,) sin(knx})}
(A14)

My

Z COmﬁZm(kn)

ng  my

+ Z {c]mﬁZm(kn)

=1lm=1

(k) =[

-cos (k,x,)+d (k) sin(knxj)}.
(A15)

To develop a concise notation, we introduce two sets of
generalized basis functions, ¥,(k,) and {,(k,), of dimen-
sions M=m,n, and N=m,n_, respectively. For the
even modes, the set ¥, is formed by arranglng the cle-
ments , &1, COS (kX)) &, sin(k, x,), from

(A10) in ascendmg order~s first in the index m and then in
the index j; the set {, is similarly formed from the

elements  Mam €08 (kX)) Wy, sinlk,x ), -+ in
(A11). Thus, we may write for the even modes
)?p(kn) = [ T ’élm(kn)cos(knxj)7
' 552m(kn)Sin(knxj)’ T ]
Zq(kn) = [ e 7ﬁll(kn) cos(knxj)’
"7ﬁ21(kn)Sin(knx])"”] (A16)
where p=1,2,--- M, m=1,2,---,m,, ¢g=12,--,N

1=1,2,---,m,,and j=[0],1,2,- - -, n,. The term with j =0
occurs for N, odd only. From (A14) and (Al5), the
generalized basis functions for the odd modes may simi-
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larly be written as
Ro(k) =] B c05 ().
i) sin(k,x;), o |
Gk, =] Aau(k,) cos (k,x,),
Ak sin(k,x)), -] (AL7)

where the indices p, g, m, [, and j have the same range
as in (Al4). In conformity with the above notation, we
combine the expansion coefficients a;,, - -, b, into a set
A, (dimension M) and the coefficients c,---,d; into
another set B, (dimension N). Thus, (A10), (A11) and
(A14), (A15) for the strip currents in the Fourier trans-

form domain assume the forms

i ( ns 1) Z Apo(k ) A Z ApX(kn) —A‘I
=1
g ) N T A N — ~ S d
i‘lx(kn’dl) = Z Bpgp(kn) =4 Z Bpg(kn) = A']xn
r=1 p=1

(A18)

where A_ A //f 1_3 =B, /A, and A is the largest (in
magmtude) element of the set of coefficients 4 ,,B,. In
(A18), J and J , are the normalized Fourier transforms
of the stnp current components from all the strips. For
later use, we also define the normalized Fourier trans-
forms of the strip current components associated with a
particular (jth) strip. For the even modes, we have

jz,j(n)z(—1-’;28-],‘02 ’:Vj (a] ~1m(kn)cos(knxj)
m=1
+Bya( K,) sin (k,x,))
x;(n)“gli-_b‘f—o_)_ ni (E]mﬁlm(kn)cos(knx])
m=1

(A19)

knxj))

+ Ei—]mfhm( kn) sin (

and for odd modes

7= F (@ cos ()
+ bjmélm(kn)sin(knxj)) |
fm(n) = —(ii;j—ol %1 (E]mﬁz,n(kn) cos (k,x,)
-
+ d_j,nﬁl,n(kn)sin(knx])) (A20)
where @, =a,, /A, _]m m /A, e Com /A and d
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=d,./ A. Tt should be noted that there is a one to one
correspondence between the elements a,,,, b,,, and A, as

well as between ¢, d,,, and B,.

AprPENDIX 11

For the sake of completeness, we give the expressions
for the electric (E) atid magnetic (H) field components
used in the calculation of the power flow in the circuit.
The hybrid field components in the microstrip transmis-
sion line can be expressed as a superposition of the
complete set of LSE (TE to y) and LSM (TM to y)
modes of a dielectrically loaded waveguide. The field
structures of the LSE and the LSM modes can be derived
from the two scalar potentials [15] ¢"(x,y,z,¢) and
y(x,y, z,t), respectively. Since we are considering only
propagating waves with angular frequency w and propa-
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(1). After lengthy but straightforward algebra, we obtain

=z sin(k,,x)

inh (T

Aj« {Cos(k )}Sm (5,,)
—cos(k,x)
sin(k,x)
cos(k,x)

h(T

—sin(k,x) } cos ( pyp)

E
|
{sm(knx)
r

} sinh(T,y,)

i?

cos (k,x) } sinh (I,7,)

cos(k,x)

{: sin(k,x)

} sinh(I},y,)

gation constant 8, we may assume the following forms for sin(k,x)
the scalar potentials: = ngl | cos( k, x) COSh(prp) (A23)
oo . k
i Y an | S (k) sinh (T} ), 0<y<d,
l// = pl(wi=B2) =1 COS(an) (A21)
& [sin(h0) |
zngn cos (ko) sinh(To(h—y)), d,<y<d,+d,=h
and
. |cos(k,x
i ZlA {_Si(n(nk )x)}cosh(Fly), 0<y<d,
e ez(wt—Bz) n= n A22
v = e | cos(k,x) (A22)
;Bn _sin(k,x) cosh(I,(h—y)), di<y<d +d,

where the upper and the lower terms inside the curly
brackets refer to even and odd modes respectively. Under
reflection in the yz plane, the symmetries of the even
modes are ”"-odd, *-even while the odd-modée symme-

tries are ”-even, 4-odd. All field componénts can be

expressed in terms of ”* are ¢ [15]. The x and y
dependences are chosen so that the tangential compo-
nents of E and the normal components of H vanish on
the metal enclosure at x = + ¢, y = 0, 4. For even modes
k,=2n—=1)w /2a, and for odd modes k,,=(n—1)7 /a.
I'; and I, are given in (9).

. The four coefficients Aj, B}, A%, and Bf can be
related to the components of the strip currents by apply-
ing the interface conditions on the field components at
y=d, namely, E/(x,d-)=FE/(x,d+), E(x,d—)=
E(x,d+), H(x,d-)— H/(x,d+)=J/(x,d) and
H(x,d—)—H.(x,d+)=—JJ(x,d). The symbols d—
and d+ denote, respectively, infinitesimally small dis-
tances below and above the plane y = d;. Two additional
conditions at y = d, on E, and E, which are zero within
0 <|x| <w and nonzero in the region w <|x| < a yield

where p = 1,2 refer to regions 1 and 2, respectively, and
v, =V, ¥y,=h—y. The coefficients QF for the electric
field components are given by

Qv —ZA(Z T, +7Z,,

Xx¥xn =

)/smh(F d,)
.)/ (T, sinh(I,d,))

QL =~ 2yA(Z.J,nt Z,,7,,) /sinn (T, d,)

=(~1)pZOAZ( n xniB
(AZ4)

ZxTxn -

where Z, = Z, ,/Zy are the normalized forms of the
impedances defined in (3)-(6). Similarly, for the magnetic
field components,

RE, = (-1)"T,A(Zz,7,,
. zn)/(kosmh(l“ d,))

2)/ (kosinh (T, d,))
(A25)

+Z2J. )/(k sinh (I,d,,))
R5n=A\Zh(_Bjxn+

RE,=(=1)'T,A(Z0,],, + 22,1,

XxTxn —



GANGULY AND KROWNE: CHARACTERISTICS OF MICROSTRIP TRANSMISSION LINES

with
2
zZE = aﬁx FzZ + a? Zh
k2, _
Zzpz= nz—.l—TZ ta Zh
k2
p=Zp = O 7
Z Z [N o g —I‘—ZZE‘Zh (A26)
D

where k2, =e€.k3, ki =k3, a, =k, /{k?+ B%}/2, and
a,, =B /{k2+ B?}'/?. As before, the upper (lower) sign
in (A24) and (A25) refers to even (0odd) modes. To obtain
the contribution to E or H from the current in the jth
strip only, we have to replace J., and J_, in (A24) and
(A25) by J, (n) and J, (n), respectively, from (A19) and
(A20).
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